1736 Vista View Drive | Longmont, CO 80504 | tel: 303.776.7249 | fax: 303.776.7314 | info@emcintegrity.com

Test Report Number: ETRB20526

Reference Standard: CFR Title 47, FCC Part 15, Class A

ICES-003, Class A

Date of Test: 17 May 2012

Date of Report: 22 May 2012

Product Name: Lithiumate Pro

Model Number: 2CN0000E

Serial Number: D16

Manufacturer: Elithion

Representative: Steven Van Buskirk

Report Type: Radiated and Conducted Emissions

Test Result: Compliant

Approved By: Vencent w. But

FCC

BSMI

VCCI

KCC

319793 & 610588

SL2-IN-E-1134R

R-3273 C-3642 T-1756 G-233 **US0168**

EMC Integrity, Inc. is an electromagnetic interference and compatibility test lab that is accredited by NVLAP (Lab Code 200737). EMCI's certificate and scope of accreditation are contained in the "Laboratory Accreditations" appendix of this report.

EMC Integrity, Inc. is a Nemko partner lab (ELA-215), and the Nemko certificate and scope of accreditation are contained in the "Laboratory Accreditations" appendix of this report.

The results contained within this report relate only to the product tested.

This report shall not be reproduced, except in full, without written approval from EMC Integrity, Inc.

This report must not be used by the client to claim product certification, approval, or endorsement by EMC Integrity,

NEMKO, NVLAP, NIST, or any agency of the federal government.

Rev. - Total Pages: 36

Prepared for:

Elithion 3393 Iris Ave. Suite 110 Boulder, Colorado 80301 Phone: 720-466-7006 x2

Email: steven@elithion.com

Customer Representative:

Steven Van Buskirk Customer Support

Tested at:

EMC Integrity, Inc. 1736 Vista View Drive Longmont, Colorado 80504

Tested by:

Tom Wittig
Lead Technician

Report Prepared by:

Mary Burback Office Manager

Report Approved by:

Vincent Greb Quality Manager

Revision	Description of Revision	Date:
Rev	Initial Release	22 May 2012

TABLE OF CONTENTS

	Section #
Test Summary	1.0
Test Environment	2.0
Radiated Emissions	3.0
LIST OF APPENDI	CES
Radiated Emissions Test Data	APPENDIX A
Product Data Sheet	APPENDIX B
EMI Test Log	APPENDIX C
Laboratory Accreditations	APPENDIX D

1.0 TEST SUMMARY

1.1 Product Description

The unit under test (UUT) was the Lithiumate Pro. The model number tested was 2CN0000E and the serial number tested was D16. It is manufactured by Elithion located in Boulder, Colorado. This product is a battery management system controller that monitors and protects lithium-ion cells in a battery pack. The product was continually exercised during testing, as documented in the "configuration" field of the test data sheet.

Additional information regarding this product may be found in the Product Data Sheet, located in Appendix B of this report.

1.2 Purpose

This report documents the test efforts performed on the Lithiumate Pro to verify compliance to the Class A limits of FCC Part 15 and ICES-003. This was a formal qualification test and was conducted on 17 May 2012.

1.3 Test Standards Used

The emission limits applied to the product tested are defined in the Code of Federal Regulations, Title 47, FCC Part 15, which is the electromagnetic emissions standard for digital devices. The UUT was set up as specified in ANSI C63.4: 2003.

The normative references of this standard define the test methods used for the emissions testing. These standards are contained in Table 1-1.

Table 1-1

CFR Title 47 FCC Part 15	ICES-003, Issue 4, February 7, 2004
ANSI C63.4: 2003	

1.4 Test Results

The UUT **complied** with the Class A emission requirements defined in Table 1-1. Test data is contained in the appropriate appendices of this report.

1.5 Modifications Required for Compliance

None.

2.0 TEST ENVIRONMENT

2.1 Radiated Emissions Test Site

Radiated emissions testing was performed at a distance of 10-meters in a semi-anechoic 10-meter chamber. This chamber is calibrated annually and meets the volumetric site attenuation requirements of ANSI C63.4: 2003. For measurements from 30 MHz to 1 GHz, a biconilog antenna is used in conjunction with a high-gain, low-noise preamplifier. This is connected to an HP 8566B spectrum analyzer with an HP 85650A Quasi-Peak (QP) Adapter, via an HP 85685 RF Preselector.

Radiated emissions testing is broken into two parts: pre-scan and QP/maximization. Pre-scanning a product from 30 MHz to 1 GHz consists of measuring peak emissions from eight radials (every 45 degrees), at four antenna heights (1 m, 2 m, 3 m and 4 m) for both antenna polarities. Data is recorded in a graph showing amplitude vs. frequency of the emissions, and frequencies for QP/maximization are chosen based on this graph. The procedure for maximizing emissions is as follows:

- 1. The analyzer is tuned to the frequency associated with the emissions having the least margin.
- 2. The turntable and antenna mast are moved to the location where the maximum emission was measured during the pre-scan.
- 3. Both are then oriented such that the maximum emission is obtained.
- 4. Cables on the UUT are manually manipulated to achieve the maximum emission.
- 5. The turntable and antenna mast are then re-adjusted to ensure a maximum reading.
- 6. If the signal in question is less than 1 GHz, quasi-peak detection is performed on the signal for a minimum of 10 seconds. For signals greater than 1 GHz, video averaging is performed.
- 7. Turntable/antenna mast maximization and QP detection are performed on all other signals within 6 dB of the limit. In the event that there are not six signals within 6 dB of the limit, the highest six signals are maximized. This ensures that a minimum of six signals are maximized and appear in the final data table.

2.2 Measurement Uncertainty

The measurement uncertainty for EMC Integrity's emissions test facility complies with the requirements defined in CISPR 16. The complete calculations of EMC Integrity's measurement uncertainty is contained in an EMCI memo, which is available upon request. However, a summary of EMCI's measurement uncertainty is given in Table 2-1.

Table 2-1

Test	Requirement	Actual
Conducted Emissions	3.60 dB	3.04 dB
Radiated Emissions – Horizontal Polarity	5.20 dB	4.67 dB
Radiated Emissions – Vertical Polarity	5.20 dB	5.01 dB

3.0 Radiated Emissions

3.1 Summary of Test Results

Radiated electric field emissions were measured on the UUT over the frequency range from 30 MHz to 1 GHz. The UUT was configured in its normal operating mode, and exercised continually during testing. Cables were oriented such that the maximum emission was achieved and quasi-peak detection was performed all signals (minimum of six) used in the final data table.

Test result: Compliant

Margin: 1.64 dB @ 160.018 MHz

3.2 Test Setup

The UUT was set up in accordance with ANSI C63.4: 2003 and tested to the Class A limits specified by the applicable standards.

3.3 Special Configurations

Not applicable.

3.4 Deviations from Test Procedures

Not applicable.

3.5 Test Data

See APPENDIX A for all test data sheets, test setup pictures and test equipment used.

APPENDIX A

Radiated Emissions Test Data

Radiated Emissions, FCC Part 15

Manufacturer:	Elithion	Project Number:	B20526
Customer Representative:	Davide Andrea	Test Area:	10 Meter #1
Model:	Lithiumate Pro (2CN0000E)	S/N:	D16
Standard Referenced:	FCC Part 15	Date:	May 17, 2012
Temperature:	22°C Humidity: 32%	Pressure:	832 mb
Input Voltage:	Battery Powered (19Vdc)	_	
Configuration of Unit:	Normal operating mode		
Test Engineer:	T. Wittig		

B20526-22-RE.doc FR0100

Type	Frequency	Level	Transducer	Gain / Loss	Final	Azm(deg)/Pol/Hgt(m)	Margin: FCC Class A QP
	(MHz)	(dBuV)	(dB/m)	(dB)	(dBuV/m)		(dB)
QP	70.008	51.7	8.2	-28.9	31.0	293/H-Pole/4.00	8.07
QP	80.008	53.0	7.7	-28.9	31.9	280/H-Pole/4.00	7.25
QP	85.008	52.7	7.4	-28.9	31.2	273/H-Pole/4.00	7.87
QP	160.018	58.1	12.3	-28.5	41.9	301/H-Pole/3.43	1.64
QP	170.017	51.1	11.9	-28.5	34.5	277/H-Pole/3.64	9.03
QP	180.019	53.8	11.4	-28.5	36.7	276/H-Pole/3.67	6.81
QP	200.024	50.0	13.0	-28.4	34.6	313/H-Pole/3.93	8.90
QP	210.024	50.7	10.4	-28.4	32.7	93/H-Pole/3.98	10.82
QP	460.052	40.3	16.7	-27.8	29.2	63/H-Pole/2.01	17.21

The highest emission measured was at 160.018 MHz, which was 1.64 dB below the limit.

- > "Type" refers to the type of measurement performed. The type of measurement made is based on the requirements of the particular standard:
 - PK = Peak Measurement: RBW is 120kHz, VBW is 3 MHz
 - QP = Quasi-Peak Measurement: RBW is 120kHz, VBW is 3 MHz, and QP Detection is ENABLED
 - AV = Video Average Measurement: RBW is 1 MHz, VBW is 10 Hz
- ➤ The "Final" emissions level is attained by taking the "Level" and adding the "Transducer" factor and the "Gain/Loss" factor. Final measurements are made with the Azimuth, Polarity, Height, and EUT Cables positioned for maximum radiation. If applicable, cables positions are noted in the test log. (Sample Calculation: 49.6 dBuV + 11.4 dB/m − 28.8 dB = 32.2 dBuV/m. **Important Note**: This is a sample calculation only for the purpose of demonstration, and does not reflect data in this report.)
- > The "Azm/Pol/Hgt" indicates the turn-table *azimuth*, the antenna *polarity*, and the antenna *height* where the maximum emissions level was measured.
- > The "Margin" is with reference to the emissions limit. A positive number indicates that the emission measurement is below the limit. A negative number indicates that the emission measurement exceeds the limit.
- The PRESCAN is a peak measurement and is performed with the RBW set to 120 kHz, VBW set to 3 MHz (30 MHz to 1 GHz), and the RBW set to 1 MHz, VBW set to 100 kHz (> 1 GHz)

Radiated Emissions, FCC Part 15

Manufacturer: Elithion Project Number: B20526 Customer Representative: Test Area: Davide Andrea 10 Meter #1 Lithiumate Pro (2CN0000E) D16 Model: S/N: May 17, 2012 Standard Referenced: FCC Part 15 Date: B20526-22-RE.doc FR0100

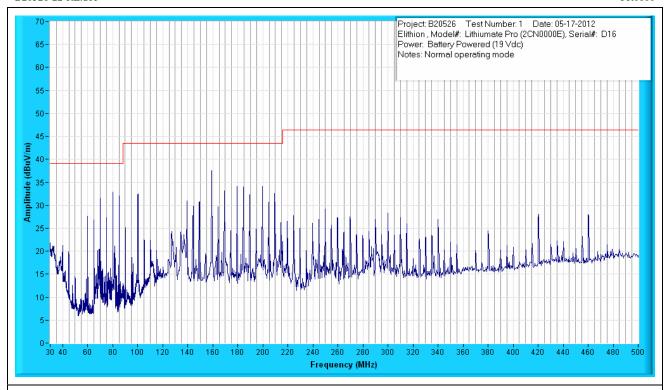


Figure A1: Radiated Emissions Prescan, 30MHz to 1000MHz, Peak Measurements at 10m Distance

emc integrity incorporated

Radiated Emissions, FCC Part 15

Manufacturer: Elithion Project Number: B20526 Davide Andrea 10 Meter #1 Customer Representative: Test Area: Lithiumate Pro (2CN0000E) Model: S/N: D16 Standard Referenced: FCC Part 15
B20526-22-RE.doc Date: May 17, 2012

FR0100

Figure A2: Radiated Emissions Test Setup – Front Side

emc integrity incorporated

Radiated Emissions, FCC Part 15

Manufacturer: Elithion Project Number: B20526 Davide Andrea 10 Meter #1 Customer Representative: Test Area: Lithiumate Pro (2CN0000E) Model: S/N: D16 Standard Referenced: B20526-22-RE.doc Date: May 17, 2012 FCC Part 15 FR0100

B20526

Figure A3: Radiated Emissions Test Setup – Right Side

Radiated Emissions, FCC Part 15

Manufacturer: Elithion Project Number: B20526 Davide Andrea 10 Meter #1 Customer Representative: Test Area: Lithiumate Pro (2CN0000E) Model: S/N: D16 Standard Referenced: FCC Part 15
B20526-22-RE.doc Date: May 17, 2012

FR0100

Figure A4: Radiated Emissions Test Setup – Back Side

emc integrity incorporated

Radiated Emissions, FCC Part 15

Manufacturer: Elithion Project Number: B20526 10 Meter #1 Customer Representative: Davide Andrea Test Area: Lithiumate Pro (2CN0000E) Model: S/N: D16 Standard Referenced: B20526-22-RE.doc FCC Part 15 May 17, 2012 Date:

FR0100

Figure A5: Radiated Emissions Test Setup – Left Side

Radiated Emissions, FCC Part 15

Manufacturer:	Elithion	Project Number:	B20526
Customer Representative:	Davide Andrea	Test Area:	10 Meter #1
Model:	Lithiumate Pro (2CN0000E)	S/N:	D16
Standard Referenced:	FCC Part 15	Date:	May 17, 2012
B20526-22-RE.doc		•	FR0100

Test Equipment List

TD	3.5	3.6 11.11	G • 1 //	D	CID 4	CID
ID	Manufacturer	Model #	Serial #	Description	Cal Date	Cal Due
Number						
1219	Mini-Circuits	ZKL-2	062905	Preamp, 10 - 2000 MHz, 30 dB	02/15/2012	02/15/2013
1232	Sunol Sciences	JB1	A071605-2	Bilog Antenna, 30 MHz to 2.0	09/01/2011	09/01/2012
				GHz		
1233	Sunol Sciences	SC104V	110305-1	Positioning Controller	NA	NA
1234	CIR	10m Chamber	001	10m Chamber with 2.5m	04/03/2011	06/03/2012
	Enterprises			turntable		
1238	Sunol Sciences	TWR95-4	110305-3	Antenna Mast	NA	NA
1239	Sunol Sciences	FM2522VS	110305-2	Turn Table, 2.5m Diameter	NA	NA
1342	Hewlett	85650A	2412A00392	Quasi-Peak Adapter	04/27/2012	04/27/2013
	Packard			-		
1343	Hewlett	8566B	2403A08410	Spectrum Analyzer Display	04/24/2012	04/24/2013
	Packard					
1344	Hewlett	8566B	2611A02676	Spectrum Analyzer with	04/24/2012	04/24/2013
	Packard			2403A08410		
1345	Hewlett	85685A	2901A0865	RF Preselector	04/27/2012	04/27/2013
	Packard					
1406	EXTECH	445715	N/A	Hygro-Thermometer	08/17/2011	08/17/2012
	Instruments					

APPENDIX B

Product Data Sheet

www.emcintegrity.com

1736 Vista View Drive | Longmont, CO 80504 | tel: 303.776.7249 | fax: 303.776.7314 | info@emcintegrity.com

1.0 Client Information

Client Information		
Manufacturer Name	Elithion	
Address	3393 Iris Ave. suite 110	
City	Boulder	
State	CO	
Zip Code	80301	
Client Representative	Steven Van Buskirk	
Title	Customer Support	
Phone	720-466-7006 x2	
Fax		
Email	steven@elithion.com	

2.0 Product Information - General

Product Information	
Product Name (as it should appear on test report)	Lithiumate Pro
Model Number	2CN0000E
Functional description of product(Detailed)	A battery management system controller that monitors
	and protects lithium-ion cells in a battery pack
	http://products.elithion.com/lithiumate-lite.php
Product type (IT, Medical, Scientific, Industrial, etc.)	IT
Is the product an intentional radiator	no
Product Dimensions	6 x 2 x 4
Product Weight	1 lb
Will fork lift be required	no
Applicable Standards, if known	FCC part 15 class A
Describe all environment(s) where product will be	Solely in electric vehicles
used	
Does product consist of multiple components? (If yes,	Yes, master controller, current sensor, cell boards,
please describe each system component)	cabling
Cycle time > 3 seconds? (If yes, How long?)	No, 1 second
Highest internally generated frequency	20 MHz
Product Set-up Time	30 minutes
Boot up time in the event of an unintentional power	3 seconds
down	

Identify all I/O Connections as well as maximum associated cable lengths below

Model No.	Description	Shielded?	Length	Quantity
Generic	24 AWG WI RE, Red	No	3 ft	15
Generic	Cell board Comm. cable	Yes	1.5 ft	2
Generic	RS232	Yes	25 ft	1
Generic	Current Sensor	Y	3 ft	1

www.emcintegrity.com

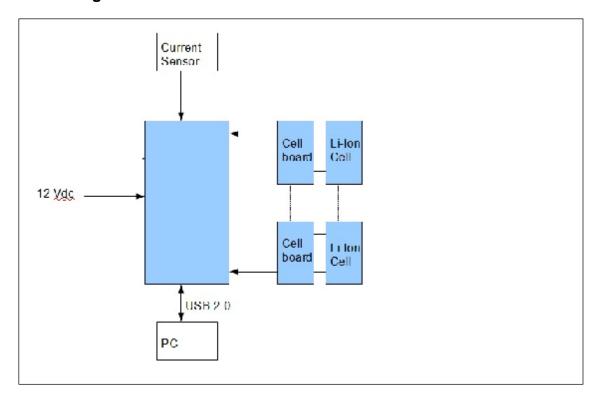
1736 Vista View Drive | Longmont, CO 80504 | tel: 303.776.7249 | fax: 303.776.7314 | info@emcintegrity.com

3.0 Power

Power Requirements	
Input Voltage Rating as it appears on unit,	19Vdc Battery
power supply, or power brick	
Input Current (specify @ 230 Vac/50 Hz)	130 ma Consumption.
Single or Multi-Phase	NA
(If multi-phase, specify delta or wye)	
Is input power connector two-prong (Hot &	NA
Neutral) or 3-prong (H, N, Ground)	
Does UUT have more than 1 power cord? (If	NA
yes, explain.)	

4.0 Unit Under Test (UUT) – Detailed Information

UUT Hardw	are						
Condition N		New	New				
Configuration		Dofoult	Default autimos All I/O account de				
During Test		Derauit	Default settings. All I/O connectors connected				
Input Power		19Vdc					
UUT Compo	onents						
Name	Mod	el No.	Seria	l No.	Description		
Lithiumate Pro	2CN0000E		D:	16	A battery management system controller that monitors and protects lithium-ion cells in a battery pack		
I/O Cabling							
See Section 2							
UUT Softwa							
Name	,	Version/I			Functionality		
Controller		1.29			Standard		
UUT Operat							
List all frequencies the product				20 MHz crystal clock			
generates/uses How will product be exercised during test?			lumina taat?	Cells will be monitored			
How will product be exercised during test? How will product be monitored during				Cens will be monitored			
test?			uuriiig	Via a RS232 cable to a laptop GUI			
What are the product's critical parameters?			arameters?	None during emissions			
Specify tolerance of all critical parameters.				NA			


www.emcintegrity.com

1736 Vista View Drive | Longmont, CO 80504 | tel: 303.776.7249 | fax: 303.776.7314 | info@emcintegrity.com

5.0 Support Equipment (SE) – Detailed Information

Support Eq	uipment (SE)						
Name	Model No.	Serial	l No.		Descrip	tion	
Toshiba	Satellite series	88624	794Q	Windows Computer			
SE I/O Cabl	ing						
Model No.		Desci	ription		Shielded?	Length	Quantity
SE Softwar	e/Firmware				•		
Name Version/Revision			F	Functionality			

6.0 Block Diagram

APPENDIX C

EMI Test Log

EMI Test Log

Manufacturer:	Elithion	Project Number:	B20526
Model:	Lithiumate Pro (2CN0000E)	S/N:	D16
Customer Representative:	Davide Andrea		
Standard Referenced:	FCC Part 15		

FR0105

10m Emissions

Test	Test	Date	Event	0	Time	Result	Initials
	Code			T	(hrs)		
RE	1312	May 17, 2012	Performed pre-test using HP Vee, OK to proceed and			Pass	TW
		0800	client setup up UUT in 10 meter chamber				
		0830	Test #1, 8 rads, 4 heights, 3 second dwell, ref level 80			Pass	TW
			dBuV, 10 meter spacing				
			Radiated Emissions, 30 MHz - 1 GHz				
			UUT is battery power, not 120Vac/60Hz				
			At 160 MHz, UUT had a margin of 3.76 dB, after		2.0	Pass	TW
			maximizing the 160 MHz, margin dropped to 1.67 dB				
			Note: Quote was for 120Vac and UUT was battery				TW
			powered, therefore no need to perform conducted				
			emissions, there will be no charge for CE, will bill client				
			for the 2 hours only.				

Regular hours: 2.0
Overtime/Prem hours: 2.0
Total hours: 2.0

APPENDIX D

Laboratory Accreditations

Nemko Laboratory Authorization

Authorization: ELA 215

EMC Laboratory: EMC Integrity, Inc.

1736 Vista View Drive Longmont, Colorado 80504

USA

Scope of Authorization:

All CENELEC standards [ENs] for EMC that are listed on the accompanying page, and all of the corresponding CISPR,

IEC and ISO EMC standards that are listed on the

accompanying page.

Nemko has assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against <u>ISO/IEC 17025</u> or equivalent. The laboratory also fulfils the conditions described in Nemko Document <u>NLA -10</u>. During the visit by the Nemko representative it was found that the Laboratory is capable of performing tests within the Scope of the Authorisation.

Accordingly, Nemko will normally accept test results from the laboratory on a partial or complete basis for certification of the products.

In order to maintain the Authorisation, the information given in the pertinent NLA-10 must be carefully followed. Nemko is to be promptly notified about any changes in the situation at the Laboratory, which may affect the basis for this Authorisation. The Authorisation may be withdrawn at any time if the conditions are no longer considered to be fulfilled.

The Authorisation is valid through June 30, 2012.

Dallas, Texas, USA.
For and on behalf of Nemko AS:

T.B. Ketterling,

Nemko ELA Co-ordinator Region: North America

Nemko AS Gaustadalléen 30 P.O.Box 73 Blindern N-0314 Oslo Norway T +47 22 96 03 30 F +47 22 96 05 50 Enterprise number NO974404532

Nemko Laboratory Authorization

Authorization: ELA 215

SCOPE OF AUTHORIZATION

Capability to perform a basic test implies also that any product (family) standard calling up this basic test is also within the scope if mentioned below or not.

Ger	neric & Product –Family Stand	ards
EN 55011 :1998+A1 :1999 +A2 :2002 EN 55011:2007 +A2:2007 CISPR 11:1997 (Modified) + A1:1999 + A2:2002 CISPR 11 Ed. 4.1	EN 55014-1:2006 EN 55014-1:2000 + A1:2001 + A2:2002 CISPR 14-1:2000 + A1:2001 + A2:2002 CISPR 14-1 Ed. 5.0	EN 55014-2:1997 + A1:2001 CISPR 14-2:1997 + A1:2001 CISPR 14-2 Ed. 1.2
EN 55022: 1998+ A1:2000, +A2:2003 CISPR 22: 2003+ A1:2004 CISPR 22:2005 (Modified) EN55022:2006 CISPR 22 Ed. 5.2 EN 55022 +A1: 2007	EN 55024: 1998 +A1:2001, +A2:2003 CISPR 24: 1997 +A1:2001, +A2:2002 CISPR 24 Ed. 1.0	EN 61000-6-1 :2007 IEC 61000-6-1 Ed. 2.0 EN 61000-6-1: 2001
EN 61000-6-2:2005 IEC 61000-6-2 Ed. 2.0	EN 61000-6-3 :2007 IEC 61000-6-3 Ed. 2.0 EN 61000-6-3: 2001 + A1 :2004	IEC 61000-6-2 Ed. 2.0 EN 61000-6-2: 2005 IEC 61000-6-2: 2005 EN 61000-6-2: 2001
EN 61326:1997 +A1:1998 + A2:2001 +A3:2003 IEC 61326:1997 + A1:1998 + A2:2000 EN 61326-1 Ed. 1.0 IEC 61326:2006	EN 60601-1-2:2001 + A1:2006 IEC 60601-1-2:2001 EN 60601-1-2:2006 IEC 60601-1-2 Ed. 3.0	EN 55103-1:1996 EN 55103-2:1996 EN 55103-1:2005 EN 55103-2:2005
EN 300 386 V.1.3.1 EN 300 386 V.1.3.3 EN 300 386 V.1.4.1	EN 61000-3-3: 1995, +A1:2001 +A2:2005 EN 61000-3-3: 1994, +A1:2001 +A2:2005 EN 61000-3-3: 2008	EN 61000-3-2: 2000 +A2 :2005 IEC 61000-3-2: 2000 (Modified) +A1:2001 +A2:2004 EN 61000-3-2:2006
EN 50130-4: 1995 + A1:1998 + A2:2002	ETSI EN 301 489 V1.8.1	ETSI EN 300 339 Ed. 1
7.2.2002	Basic Standards	
EN 61000-4-2:1995, +A1:1998, +A2:2000 IEC 61000-4-2:1995, +A1:1998, +A2:2000 IEC 61000-4-2:2009	EN 61000-4-3:2002, +A1:2002 IEC 61000-4-3:2002, +A1:2002 EN 61000-4-3:2006 +A1:2006 +A2:2006 IEC 61000-4-3 Ed. 3.0	EN 61000-4-4:1995, +A1:2002, +A2:2002 IEC 61000-4-4:1995, +A1:2000, +A2:2001 EN 61000-4-4:2004 IEC 61000-4-4 Ed. 2.0
EN 61000-4-5:1995, +A1:2001 IEC 61000-4-5:1995, +A1:2000 EN 61000-4-5 :2006 IEC 61000-4-5 Ed. 2.0	EN 61000-4-6:1996, +A1:2001 IEC 61000-4-6:1996, +A1:2000 EN 61000-4-6 : 2009 IEC 61000-4-6 Ed. 2.2	EN 61000-4-8:1994,+A1:2001 IEC 61000-4-8:1994, +A1:2001 IEC 61000-4-8 Ed. 1.1
EN 61000-4-11:2004 IEC 61000-4-11 Ed. 2.0 EN 61000-4-11:1994, +A1:2000 IEC 61000-4-11:1994, +A1:2000	BLANK	BLANK

NLA 3 ED3

TBKetterling, Nemko ELA Co-ordinator May 1, 2009

NVLAP-01C (REV. 2009-01-28) For the National Institute of Standards and Technology Certificate of Accreditation to ISO/IEC 17025:2005 ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communique dated January 2009). is accredited by the National Voluntary Laboratory Accreditation Program for specific services, National Institute of Standards and Technology United States Department of Commerce listed on the Scope of Accreditation, for: NVLAP LAB CODE: 200737-0 EMC Integrity, Inc. Longmont, CO 2011-07-01 through 2012-06-30 Effective dates

National Voluntary Laboratory Accreditation Program

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005

EMC Integrity, Inc.

1736 Vista View Drive Longmont, CO 80504 Mr. Vincent W. Greb

Phone: 303-776-7249 Fax: 303-776-7314 E-Mail: vinceg@emcintegrity.com URL: http://www.emcintegrity.com

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

NVLAP LAB CODE 200737-0 Scope Revised: 2012-03-16

NVLAP Code Designation / Description

Emissions Test Methods

12/100063c IEC 61000-6-3 (1996), EN 61000-6-3 (2001), A1 (2004): Electromagnetic Compatibility

(EMC) - Part 6: Generic standards - Section 3: Emission standard for residential,

commercial, and light-industrial environments.

12/CIS11f AS/NZS CISPR 11 (2002): Industrial, scientific and medical (ISM) radio frequency

equipment - Electromagnetic disturbance characteristics - Limits and methods of

measurement

12/CIS11g IEC/CISPR 11, Ed. 4.1 (2004-06): Industrial, scientific and medical (ISM) radio-frequency

equipment - Electromagnetic disturbance characteristics - Limits and methods of

measurements

12/CIS11h AS/NZS CISPR 11 (2004): Industrial, scientific and medical (ISM) radio frequency

equipment - Electromagnetic disturbance characteristics - Limits and methods of

measurement

12/CISTTi IEC/CISPR 11, Ed. 4.1 (2004-06) + A1(2004): Industrial, scientific and medical (ISM) radio

frequency equipment - Electromagnetic disturbance characteristics - Limits and methods of

measurement

2011-07-01 through 2012-06-30

Effective dates

For the National Institute of Standards and Technology

Page 1 of 10

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

NVLAP LAB CODE 200737-0 Scope Revised: 2012-03-16

NVLAP Code	Designation / Description
12/CIS11j	EN 55011 (1998) + A1(1999), A2(2002): Industrial, scientific and medical (ISM) radio frequency equipment - Electromagnetic disturbance characteristics - Limits and methods of measurement
12/CIS11k	IEC/CISPR 11 (2003), EN 55011 (1998), A2(2002): Limits and Methods of Measurement of Electromagnetic Disturbance Characteristics of Industrial, Scientific, and Medical Radio-Frequency Equipment
12/CIS11m2	EN 55011 (2009) + A1 (2010): Industrial, scientific and medical (ISM) radio-frequency equipment - Electromagnetic disturbance characteristics - Limits and methods of measurement
12/CIS11p	IEC/CISPR 11 Ed. 5 (2009-05): Industrial, scientific and medical equipment - Radio-frequency disturbance characteristics - Limits and methods of measurement
12/CIS14b1	AS/NZS CISPR 14-1 (2003): Electromagnetic Compatibility - Requirements for household appliances, electric tools and similar apparatus - Part 1: Emission
12/CIS14x	IEC/CISPR 14-1, Ed. 4 (2003): Electromagnetic Compatibility - Requirements for household appliances, electric tools and similar apparatus - Part 1: Emission
12/C1S22	IEC/CISPR 22 (1997) & EN 55022 (1998) + A1(2000): Limits and methods of measurement of radio disturbance characteristics of information technology equipment
12/CIS22a	IEC/CISPR 22 (1993) and EN 55022 (1994): Limits and methods of measurement of radio disturbance characteristics of information technology equipment, Amendment 1 (1995) and Amendment 2 (1996)
12/CIS22a4	IEC/CISPR 22 (1993) & EN 55022 (1994)+A1(1995), A2(1997): Limits and methods of measurement of radio disturbance characteristics of information technology equipment
12/CIS22b	CNS 13438 (1997): Limits and Methods of Measurement of Radio Interference Characteristics of Information Technology Equipment

2011-07-01 through 2012-06-30

Effective dates

Page 2 of 10

For the National Institute of Standards and Technology

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

NVLAP LAB CODE 200737-0 Scope Revised: 2012-03-16

NVLAP Code	Designation / Description
12/CIS22e	IEC/CISPR 22, Fourth Edition (2003-04) & EN 55022 (1998): Information technology equipment - Radio disturbance characteristics - Limits and methods of measurement
12/CIS22e1	IEC/CISPR 22, Edition 5 (2005) and EN 55022 (1998): Information technology equipment - Radio disturbance characteristics - Limits and methods of measurement
12/CIS22e3	IEC/CISPR 22, Edition 5 (2005) + A1(2005): Information technology equipment - Radio disturbance characteristics - Limits and methods of measurement
12/CIS22c4	EN 55022 (1998) + Δ 1(2000) + Δ 2(2003): Information technology equipment - Radio disturbance characteristics - Limits and methods of measurement
12/CIS22f	CNS 13438 (2006): Limits and Methods of Measurement of Radio Interference Characteristics of Information Technology Equipment
12/CIS22j	EN 55022 (2006); Information technology equipment - Radio disturbance characteristics - Limits and methods of measurement
12/CIS22j1	EN 55022 (2006) + A1 (2007): Information technology equipment - Radio disturbance characteristics - Limits and methods of measurement
12/CIS22j2	EN 55022 :2010: Information technology equipment. Radio disturbance characteristics. Limits and methods of measurement
12/EM02d	IEC 61000-3-2, Edition 2.2 (2004-11): Electromagnetic compatibility (EMC) - Part 3-2: Limits - Limits for harmonic current emissions (equipment input current <= 16 A per phase)
12/EM03b	IEC 61000-3-3, Edition 1.1(2002-03) & EN 61000-3-3, A1(2001): EMC - Part 3-3: Limits - Limitations of voltage changes, voltage flucuations and flicker, in public low-voltage supply-systems, for equipment with rated current <=16 A per phase and not subject to conditional connections
12/EM03g	IEC 61000-3-3, Edition 1.1 (2003) +A2 (2005): EMC Part 3-3: Limits - Limitations of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems, for equipment with rated current <= 16 A per phase and not subject to conditional connections

2011-07-01 through 2012-06-30

Effective dates

For the National Institute of Standards and Technology

Page 3 of 10

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

NVLAP LAB CODE 200737-0 Scope Revised: 2012-03-16

NVLAP Code	Designation / Description
12/F18	FCC OST/MP-5 (1986): FCC Methods of Measurement of Radio Noise Emissions for ISM Equipment (cited in FCC Method 47 CFR Part 18 - Industrial, Scientific, and Medical Equipment)
12/FCC15b	ANSI C63.4 (2003) with FCC Method 47 CFR Part 15, Subpart B: Unintentional Radiators
12/KN11d1	KN11 (Annex 3) with RRA Announce 2008-11 (Dec. 16, 2008): Conformity Assessment Procedure for Electromagnetic Interference; With KN 11 (Annex 3)
12/KN16	Korea RRA Notice No. 2008-11 (Dec. 16, 2008): Conformity Assessment Procedures for Electromagnetic Interference using KN 16-1-1, KN 16-1-2, KN 16-1-3, KN 16-1-4, KN 16-1-5, KN 16-2-1, KN 16-2-2, KN 16-2-3, KN 16-2-4 (2008-05)
12/KN22	KN22 with RRL Notice No. 2005-82 (Sept. 29, 2005): RRL Notice No. 2005-82: Technical Requirements for Electromagnetic Interference Annex 8 (KN-22), RRL Notice No. 2005-131: Conformity Assessment Procedures for Electromagnetic Interference
12/KN22e	KN22 (2008-5) with RRL Notice No. 2008-3 (May 20, 2008); Conformity Assessment Procedure for Electromagnetic Interference; With KN 22
12/KN22f	KN22 (Annex 5) with RRA Announce 2010-5 (Dec 24, 2010); Conformity Assessment Procedure for Electromagnetic Interference; With KN 22 (Annex 5)
12/RRA105	RRA Announce 2010-5, K only (December 24, 2010); Conformity Assessment Procedure for Electromagnetic Interference (K only)
12/RRA1118	RRA Public Notification 2011-18, K only (July 5, 2011): Technical Requirements for Electromagnetic Interference (K only)
12/151	AS/NZS CISPR 22 (2002) and AS/NZS 3548 (1997): Electromagnetic Interference - Limits and Methods of Measurement of Information Technology Equipment
12/VCCIa	VCCI: Agreement of Voluntary Control Council for Interference by Information Technology Equipment - Technical Requirements: V-3/2005.04

2011-07-01 through 2012-06-30

Effective dates

For the National Institute of Standards and Technology

Page 4 of 10

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

NVLAP LAB CODE 200737-0 Scope Revised: 2012-03-16

NVLAP Code	Designation / Description
------------	---------------------------

12/VCClb Agreement of VCCl V-3 (2006.04): Agreement of Voluntary Control Council for

Interference by Information Technology Equipment - Technical Requirements: V-3/2006.04

12/VCCle Agreement of VCCl V-3 (2007.04): Agreement of Voluntary Courtol Council for

Interference by Information Technology Equipment - Technical Requirements: V-3/2007.04

12/VCCId Agreement of VCCI V-3 (2008.04): Agreement of Voluntary Control Council for

Interference by Information Technology Equipment - Technical Requirements: V-3/2008.04

12/VCCle Agreement of VCCl V-3 (2009.04): Agreement of Voluntary Control Council for

Interference by Information Technology Equipment - Technical Requirements: V-3/2009.04

(radiated disturbance above 1 GHz)

12/VCCIg Agreement of VCCI V-3 (2011.04): Agreement of VCCI Council - Technical

Requirements: V-3/2011.04 (including radiated disturbance above 1 GHz)

Immunity Test Methods

12/610006h IEC 61000-6-1, 2nd edition (2005-03): Electromagnetic compatibility (EMC) - Part 6:

Generic standards - Section 1: Immunity for residential, commercial and light-industrial

environments

12/610006i IEC 61000-6-2, Edition 2.0 (2005-01): Electromagnetic compatibility (EMC) - Part 6-2:

Generic standards - Immunity for industrial environments

12/CIS24g CISPR 24 ed2.0 (2010-08): Information technology equipment - Immunity characteristics -

Limits and methods of measurement

12/CIS24h EN 55024 (2010): Information technology equipment. Immunity characteristics. Limits and

methods of measurement

12/101b IEC 61000-4-2 (2001); EN 61000-4-2 (2001), A2 (2001): Electrostatic Discharge Immunity

Test

2011-07-01 through 2012-06-30

Effective dates

For the National Institute of Standards and Technology

Page 5 of 10

National Voluntary Laboratory Accreditation Program

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

NVLAP LAB CODE 200737-0 Scope Revised: 2012-03-16

NVLAP Code	Designation / Description
12/101e	EN 61000-4-2 +A1(1998) +A2(2001): Electrostatic Discharge Immunity Test
12/I01d	IEC 61000-4-2, Ed. 2.0 (2008-12): Electromagnetic compatibility (EMC) - Part 4-2: Testing and measurement techniques - Electrostatic discharge immunity test
12/101f	EN 61000-4-2 (2009-05): Electromagnetic compatibility (EMC) — Part 4-2 : Testing and measurement techniques — Electrostatic discharge immunity test
12/102b	IEC/EN 61000-4-3, Ed. 2.1 (2002), A1 (2002); EN 61000-4-3; Radiated, radio-frequency, electromagnetic field immunity test
12/102e	EN 61000-4-3 (2002) + Δ 1(2002) + IS1(2004); Radiated, radio-frequency, electromagnetic field immunity test
12/102f	EN 61000-4-3 (2002) \pm A1(2002): Radiated, radio-frequency, electromagnetic field immunity test
12/102ggg	IEC 61000-4-3, Ed. 3.0 (2006-02) + A1 (2007) + A2 (2010): Electromagnetic compatibility (EMC) - Part 4-3: Testing measurement techniques - Radiated, radio-frequency, electromagnetic field immunity test
12/102hhh	EN 61000-4-3 (2006) +A1 (2008) + A2 (2010): Electromagnetic compatibility (EMC). Testing and measurement techniques. Radiated, radio- Frequency, electromagnetic field immunity test
12/103e	IEC 61000-4-4, Ed. 2.0 (2004-07): Electromagnetic compatibility (EMC) - Part 4-4: Testing and measurement techniques - Electrical fast transient/burst immunity test
12/103e	EN 61000-4-4 (2004): Electromagnetic compatibility (EMC) - Part 4-4: Testing and measurement techniques - Electrical fast transient/burst immunity test
12/104aa	IEC 61000-4-5, Ed. 2.0 (2005-11); EN 61000-4-5: Electromagnetic Compatibility (EMC) -

Part 4-5: Testing and measurement techniques - Surge immunity test

2011-07-01 through 2012-06-30

Effective dates

Page 6 of 10

For the National Institute of Standards and Technology

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

NVLAP LAB CODE 200737-0 Scope Revised: 2012-03-16

NVLAP Code	Designation / Description
12/104b	IEC 61000-4-5 (2001), A1(2000); EN 61000-4-5(2001), A1(2000): Surge Immunity Test
12/I04d	BS EN 61000-4-5 (2006); Electromagnetic compatibility (EMC). Testing and measurement techniques. Surge immunity test
12/105d	IEC 61000-4-6, Ed. 2.1 (2004); EN 61000-4-6: Electromagnetic compatibility (EMC) - Part 4-6: Testing and measurement techniques - Immunity to conducted disturbances, induced by radio-frequency fields
12/I05e	EN 61000-4-6 (1996) + A1 (2001): Immunity to Conducted Disturbances, Induced by Radio Frequency Fields
12/105f1	IEC 61000-4-6 Ed. 3.0 (2008): Electromagnetic compatibility (EMC) - Part 4-6: Testing and measurement techniques - Immunity to conducted disturbances, induced by radio-frequency fields
12/105j	EN 61000-4-6 (2009): Electromagnetic compatibility (EMC) - Part 4-6: Testing and measurement techniques - Immunity to conducted disturbances, induced by radio-frequency fields
12/1066	IEC 61000-4-8 (2001), A1(2000); EN 61000-4-8 (2001),A1(2000): Power Frequency Magnetic Field Immunity Test
12/106e	EN 61000-4-8 (1993) + A1 (2001): Power Frequency Magnetic Field Immunity Test
12/106e	IEC 61000-4-8 (2009): Electromagnetic compatibility (EMC) - Part 4-8: Testing and measurement techniques - Power frequency magnetic field immunity test
12/1061	EN 61000-4-8:2010: Electromagnetic compatibility (EMC). Testing and measurement techniques. Power frequency magnetic field immunity test
12/I07e	IEC 61000-4-11, Ed. 2 (2004-03) & EN 61000-4-11: Electromagnetic compatibility (EMC) - Part 4-11; Testing and measurement techniques - Voltage dips, short interruptions and voltage variations immunity tests

2011-07-01 through 2012-06-30

Effective dates

-117

For the National Institute of Standards and Technology

Page 7 of 10

National Voluntary Laboratory Accreditation Program

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

NVLAP LAB CODE 200737-0 Scope Revised: 2012-03-16

NVLAP Code	Designation / Description
12/107e	EN 61000-4-11 (1994), A1 (2001): Voltage Dips, Short Interruptions and Voltage Variations Immunity Tests
12/107f	EN 61000-4-11 (2004): Voltage Dips, Short Interruptions and Voltage Variations Immunity Tests
12/KN11a	KN 61000-4-11 with RRL Notice No. 2005-130 (Dec 27, 2005): Voltage Dips, Short Interruptions and Voltage Variations Immunity Tests
12/KN11f	KN 61000-4-11 (2008-5); RRL Notice No. 2008-4 (May 20, 2008): Voltage Dips, Short Interruptions and Voltage Variations Immunity Tests
12/KN11h	KN 61000-4-11 (Annex 1-7) RRA Announce 2010-6 (Dec.24, 2010): Conformity Assessment Procedure for EMS (Voltage Dips, Short Interruptions and Voltage Variations Immunity tests)
12/KN24	KN24 (December 2005) with RRL Notice No. 2005-83: Information Technology Equipment - immunity characteristics - limits and methods of measurements
12/KN24d	KN 24 (2008-5) with RRL Notice No. 2008-4 (May 20, 2008): Information Technology Equipment - immunity characteristics - limits and methods of measurements
12/KN24e	KN 24 (Annex 5) with RRA Announce 2010-6 (Dec. 24, 2010): Conformity Assessment Procedure for EMS (Information technology equipment – Immunity characteristics – Limits and methods of measurement)
12/KN2a	KN 61000-4-2 with RRL Notice No. 2005-130 (Dec. 27, 2005): Electrostatic Discharge Immunity Test
12/KN2c	KN 61000-4-2 (2008-5); RRL Notice No. 2008-4 (May 20, 2008): Electrostatic Discharge Immunity Test
12/KN2e	KN 61000-4-2 (Annex 1-1) RRA Announce 2010-6 (Dec. 24, 2010): Conformity Assessment Procedure for EMS (Electrostatic Discharge Immunity Test)

2011-07-01 through 2012-06-30

Effective dates

Page 8 of 10

For the National Institute of Standards and Technology

National Voluntary Laboratory Accreditation Program

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

NVLAP LAB CODE 200737-0

SECTION VINC		
Scone	Revised	2012-03-16
SUUTIC	INCVISCO.	2012-03-10

NVLAP Code	Designation / Description
12/KN3a	KN 61000-4-3 with RRL Notice No. 2005-130 (Dec. 27, 2005): Radiated, radio-frequency, electromagnetic field immunity test
12/KN3c	KN 61000-4-3 (2008-5); RRL Notice No. 2008-4 (May 20, 2008): Radiated, radio-frequency, electromagnetic field immunity test
12/KN3e	KN 61000-4-3 (Annex 1-2) RRA Announce 2010-6 (Dec. 24, 2010): Radiated, radio-frequency, electromagnetic field immunity test
12/KN4a	KN 61000-4-4 with RRL Notice No. 2005-130 (Dec. 27, 2005): Electromagnetic compatibility (EMC): Testing and measurement techniques - Electrical Fast Transient/Burst Immun
12/KN4c	KN 61000-4-4 (2008-5); RRL Notice No. 2008-5 (May 20, 2008): Electromagnetic compatibility (EMC): Testing and measurement techniques - Electrical Fast Transient/Burst Immunity Test
12/KN4e	KN 61000-4-4 (Annex 1-3) RRA Announce 2010-6 (Dec. 24, 2010): Electromagnetic compatibility (EMC): Testing and measurement techniques - Electrical Fast Transient/Burst Immunity Test
12/KN5a	KN 61000-4-5 with RRL Notice No. 2005-130 (Dec. 27, 2005): Surge Immunity Test
12/KN5c	KN 61000-4-5 (2008-5); RRL Notice No. 2008-4 (May 20, 2008): Surge Immunity Test
12/KN5e	KN 61000-4-5 (Annex 1-4) RRA Announce 2010-6 (Dec. 24, 2010); Conformity Assessment Procedure for EMS (Surge Immunity Test)
12/KN6a	KN 61000-4-6 with RRL Notice No. 2005-130 (Dec. 27, 2005): Electromagnetic compatibility (EMC): Testing and measurement techniques - Immunity to conducted disturbances,
12/KN6c	KN 61000-4-6 (2008-5); RRL Notice No. 2008-4 (May 20, 2008); Electromagnetic compatibility (EMC); Testing and measurement techniques - Immunity to conducted disturbances, induced by radio-frequency fields

2011-07-01 through 2012-06-30

Effective dates

Page 9 of 10

For the National Institute of Standards and Technology

National Voluntary Laboratory Accreditation Program

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

NVLAP LAB CODE 200737-0

Scope Revised: 2012-03-16

NVLAP Code Designation / Description

12/KN6e KN 61000-4-6 (Annex 1-5) RRA Announce 2010-6 (Dec. 24, 2010): Electromagnetic

compatibility (EMC): Testing and measurement techniques - Immunity to conducted

disturbances, induced by radio-frequency fields

12/KN8a KN 61000-4-8 with RRI. Notice No. 2005-130 (Dec. 27, 2005): Power Frequency Magnetic

Field Immunity Test

12/KN8c KN 61000-4-8 (2008-5); RRL Notice No. 2008-4 (May 20, 2008): Power Frequency

Magnetic Field Immunity Test

12/KN8e KN 61000-4-8 (Annex 1-6) RRA Announce 2010-6 (Dec. 24, 2010): Conformity

Assessment Procedure for EMS (Power Frequency Magnetic Field Immunity Test)

12/RRA106 RRA Public Notification 2010-6, December 24, 2010 (K only): Conformity Assessment

Procdure for Electromagneite Susceptibility (K only)

12/RRA1117 RRA Public Notification 2011-17, K only (July 5, 2011): Technical Requirements for

Electromagnetic Susceptibility, K only

Product Safety Test Methods

12/60601ab IEC 60601-1-2, Ed. 3.0 (2007): Medical electrical equipment - Part 1-2: General

requirements for safety - Collateral standard: Electromagnetic compatibility - Requirements

and tests

12/60601ac KN 60601-1-2 (2008-5); RRL Notice No. 2008-4 (May 20, 2008); Medical electrical

equipment - Part 1-2: general requirements

for safety - collateral standard: electromagnetic compatibility -

requirements and tests

12/60601h1 EN 60601-1-2 (2007): Medical electrical equipment - Part 1-2: General requirements for

safety - Collateral standard: EMC - Requirements and tests

2011-07-01 through 2012-06-30

Effective dates

For the National Institute of Standards and Technology

Page 10 of 10

END OF REPORT